
Grade 9 Science – Unit 1 Naming Compounds – A Basic Introduction

What is an IONIC BOND?

An Ionic Bond is a bond formed by the attraction between two oppositely charged ions.

- ? An ionic bond is formed between metals and non-metals.
- ? The metal gives one or more electrons, while the non-metal takes the electron(s).
- ? This causes the metal to become positively charged and the non-metal to become negatively charges

Example --- Formation of sodium chloride (Table Salt or NaCl)

As can be seen, a sodium atom has one electron in its outer orbit, which it needs to lose to attain a stable electronic configuration. Chlorine has seven outer orbit electrons. It needs one more electron to attain a stable configuration. Sodium atom transfers an electron to the chlorine atom, and an ionic bond is formed.

When the sodium atom gave away an electron and became Na+ it is called a CATION. Likewise when the chlorine atom took the electron to become Cl- it is called an ANION.

Naming this compound

- ? The metal ion's name does not change regardless of charge
- ? The non-metal's name ends in ide

Example:

- ? AlCl₃ = aluminum chlor *ide*
- ? Na₂S = sodium sulf *ide*
- ? $K_2O = potassium oxide$
- ? $MgH_2 = magnesium hydr$ *ide*

What is a COVALENT BOND?

A covalent compound is a compound in which the atoms that are bonded SHARE electrons. Electrons are NOT transferred (i.e., given or taken).

? A covalent bond is formed when two non-metals bond to each other.

How is it possible for two ions with a similar negative charge can bond since same charges repel?

? It is electronegativity. In our study of the element, you have likely learned that your element has electronegativity. In simple terms, electronegativity is a measure of how much an element pulls electrons away from other elements. An element that takes electrons has a high electronegativity.

Questions

- 1. Metals give electrons. Is the electronegativity of a metal high or low?
- 2. Will metals form covalent bonds IF they have low electronegativity? Yes or No. Give one reason.
- ? When a non-metal bonds with another non-metal, it is because the elements have almost the same electronegativity. Neither element can give or take electrons. To be in a stable electron configuration, they share electrons.

This bonding gives a POLYATOMIC ION.

- ? SO₄ Sulphate
- ? SO₃ Sulphite
- ? $NO_3 Nitrate$
- ? NO₂ Nitrite
- ? PO₄ Phosphate
- ? PO₃ Phosphite
- ? OH Hydroxide

NOTE: The polyatomic ion STAYS TOGETHER. It has its own charge. For example, the Sulphate has a charge of -2 or SO_4^{-2}

The names the polyatomic ions must be remembered. NOTE: the ITE is one less than the ATE

What is the name of the compound when an ion made up of two or more elements that are covalently-bonded (Polyatomic Ion) bonds with a metal?

Just keep the name of the metal and the polyatomic ion.

- ? H₂SO₄ is Hydrogen sulphate
- ? K NO₃ is Potassium nitrate
- ? Na₂ PO₃ Sodium phosphite

PRACTICE Name the following compounds

Chemical Compound	Name
HNO ₃	
LiCI	
Na ₂ O	
MgF ₂	
K ₂ SO ₄	
NaOH	
Al ₂ S ₃	

As a reminder...

How many elements are in each of the following compounds? As well, how many atoms of each element are there in each compound?

	<u> </u>	
Chemical Compound	Chemical Symbol for Each Element	Number of Atoms of Each Element
HNO ₃	Н	1H
	N	1N
	0	30
C ₁₂ H ₄ O ₂ Cl ₄		
CH₃COO		
K ₂ SO ₄		